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Abstract
We utilize neutron diffraction techniques to study dynamical correlation of
protons in the ionic crystal of potassium hydrogen carbonate (KHCO3). Protons
are found in small planar centrosymmetric dimer entities, (HCO−

3 )2, linked
by moderately strong hydrogen bonds and well separated by the stacking of
potassium atoms. There is no disordering at low temperature and rods of diffuse
scattering in (a∗, c∗) planes, not observed for KDCO3, reveal macroscopic
entanglement. We propose a theoretical framework for the degenerate lattice
of indistinguishable protons, treated as fermions. Entangled centrosymmetric
pairs are superpositions of singlet-like and triplet-like pseudoproton states and
the sublattice is a superposition of nonlocal macroscopic single-pseudoproton
states, adiabatically separated from the lattice of heavy atoms. The sublattice
has no internal dynamics (super-rigidity) and is decoherence free. The energy-
free quantum entanglement is a consequence of the crystal structure, irrespective
of proton–proton interaction. The differential cross-section calculated for
the super-rigid lattice accounts for the observed rods of intensity. Between
150 and 300 K, protons are progressively transferred to secondary sites at
≈0.6 Å from the main position, via tunnelling along hydrogen bonds. Quantum
entanglement, still observed at 300 K, indicates that proton transfer is a
thermally activated coherent superposition of macroscopic tunnelling states.
This work adds a crystalline solid to the list of systems with ‘super’ properties.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The linear formalism of quantum mechanics extrapolated from the level of electrons and atoms
to that of everyday life can lead to conclusions in conflict with our commonsense intuition,
such as Schrödinger’s cat in a superposition of ‘alive–dead’ states, or the Einstein–Podolsky–
Rosen (EPR) paradox [1] challenging the classical concept of locality. Such conflicts can lead
to a dichotomy of interpretation in that, while at the microscopic level a quantum superposition
indicates a lack of definiteness of outcome, at the macroscopic level a similar superposition can
be interpreted as simply a measure of the probability of one outcome or the other, one of which
is definitely realized for each measurement of the ensemble [2–7].

The dichotomy of interpretation is legitimated by decoherence [8]. In complex systems,
an initially entangled subsystem loses its ability to exhibit quantum interference by getting
entangled with many degrees of freedom via interaction with the environment. In the condensed
matter this process normally occurs on a very short timescale (�10−15 s) [9], but it is unknown
whether there is an upper limit on the timescale, the size and the complexity of systems
displaying entanglement.

Upon the assumption that decoherence is the only cause preventing the persistence
of superposition states, macroscopic quantum behaviour is possible for systems decoupled
from the environment [10]. Recent studies of the potassium hydrogen carbonate crystal
(KHCO3) have revealed a class of nonferro/nonantiferroelectric and nonmagnetic ionic solids
for which macroscopic quantum behaviour arises naturally for entangled pairs of protons
in centrosymmetric dimer entities (HCO−

3 )2 linked by moderately strong hydrogen bonds
(figure 1) [11, 12]. Decoherence is cancelled by the dynamical separation of protons from
the rest of the lattice [13]. Neutron diffraction reveals, in addition to Bragg’s peaks, rods of
diffuse scattering, suggesting the existence of macroscopic states for a number of atoms on the
scale of Avogadro’s constant.

So far, experiments on KHCO3 were carried out at 14 K, a temperature at which protons
are ordered. The motivation of the present work is to test whether quantum coherence survives
at higher temperatures in the presence of proton transfer along the hydrogen bonds, commonly
thought of as a stochastic disordering process [14–16]. In this paper, we report evidence that
quantum coherence survives at room temperature, quite at variance with any expectation. This
sheds light onto proton dynamics in connection with some fundamental points of quantum
mechanics applied to macroscopic systems at elevated temperatures.

The organization of this paper is the following. In section 2, crystal structures determined
at various temperatures evidence the spatial coherence of proton transfer. Simultaneously,
the rods of diffuse scattering, a fingerprint of quantum coherence, are largely temperature
independent. The theoretical framework for quantum entanglement of protons is presented in
section 3. We define pseudoproton states for entangled centrosymmetric pairs and macroscopic
single-particle states for the sublattice of protons. We show that the sublattice has no internal
dynamics: it is ‘super-rigid’. We calculate the differential cross-section for comparison with
experiments. In section 4, we introduce the quantum superposition of macroscopic tunnelling
states and we emphasize the role of disentanglement in proton transfer dynamics. We conclude
that the upper limit, if any, for KHCO3 to display quantum entanglement is beyond Avogadro’s
constant and room temperature.

2. Neutron diffraction experiments

Twining-free single crystals of KHCO3 were obtained by slow recrystallization from aqueous
solutions.
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Figure 1. Schematic view of the crystalline structure of KHCO3 at 300 K. Apart from proton
positions and thermal ellipsoids, the structure is identical to that at 14 K [12]. The arrows point to
the sites exclusively occupied by protons at low temperature. Top: projection onto the plane normal
to (c). The dotted lines joining protons are guides for the eyes to emphasize the structure of the
proton sublattice (see the text). Bottom: projection onto the plane normal to (b).

2.1. Crystal structure

Measurements were conducted with the Stoe four-circle diffractometer 5C2 at the Orphée
reactor (Laboratoire Léon Brillouin) [17]. Approximately cubic samples (3 × 3 × 3 mm3)
were cut from large crystals and tested at room temperature. An oriented crystal was loaded
into an aluminium container that was mounted in a cryostat. The temperature was controlled to
±1 K.

The structures at 150, 200 and 300 K (table 1) are similar to those previously
reported [18, 19, 12]. The crystal is monoclinic, space group P21/a (C5

2h), with four
KHCO3 entities per unit cell (figure 1 and tables 2–4). Protons are found in small
planar centrosymmetric dimer entities (HCO3)

−
2 well separated by the stacking of potassium

atoms. All dimers lie practically in the (301̄) planes and hydrogen bonds are also virtually
parallel to the same direction. The increase of the unit cell dimensions with temperature is
marginal. Needless to say, the crystal is nonferro/nonantiferroelectric and nonmagnetic at any
temperature.

At 150 K protons are still localized at a single site (configuration I, see arrows in figure 1).
All protons are crystallographically equivalent and indistinguishable. At higher temperatures,
the probability density is distributed among two sites located at ≈±0.3 Å off-centre of the
hydrogen bond (figure 2 and tables 2 and 3). The centre of symmetry is preserved and secondary
proton sites (configuration II) are also crystallographically equivalent and indistinguishable. I
and II are related through translation (a/2, b/2, 0).

Proton transfer does not change Bragg’s peak positions and there is no evidence for
additional peaks. Only intensities are affected. Consequently, the crystal lattice and the
geometry of the CO2−

3 entities remain unchanged by proton transfer. Configurations I and
II are distinct in direct space and isomorphous in reciprocal space.
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Table 1. Neutron single crystal diffraction data and structure refinement for potassium hydrogen
carbonate at various temperatures. λ = 0.8305 Å, space group P21/a. The variance for the last
digit is given in parentheses.

Crystal data 14 K [12] 150 K 200 K 300 K

a (Å) 15.06(2) 15.098(8) 15.112(8) 15.18(1)
b (Å) 5.570(15) 5.597(4) 5.601(4) 5.620(4)
c (Å) 3.650(8) 3.665(4) 3.671(4) 3.710(4)
α (deg) 90 90 90 90
β (deg) 103.97(15) 104.14(5) 104.32(5) 104.67(5)
γ (deg) 90 90 90 90
Volume 297.1 300.3 301.1 306.2
Reflections measured 1857 2137 2075 1731
Independent reflections 979 1881 1332 1475
Reflections used 904 1073 1044 1068
σ(I) limit 3.00 3.00 3.00 3.00
Refinement on F
R-factor 0.026 0.037 0.032 0.035
Weighted R-factor 0.020 0.029 0.032 0.034
Number of parameters 56 56 56 56
Goodness of fit 1.070 1.028 0.84 1.025
Extinction 4040(80) 32.0(10) 76.3(21) 3260(100)

Table 2. Atomic positions, isotropic temperature factors and site occupancies for KHCO3 at 150 K
(first lines), 200 K (second lines), and 300 K (third lines). The variance for the last digit is given in
parentheses.

Atom x/a y/b z/c U(iso) (Å
2
) Occupancy

K(1) 0.165 79(4) 0.034 51(12) 0.294 90(17) 0.0078 1.000
0.165 68(6) 0.033 10(16) 0.295 0(2) 0.0127 1.000
0.165 34(6) 0.022 98(16) 0.295 2(2) 0.0213 1.000

C(2) 0.119 63(2) 0.524 87(6) −0.145 20(9) 0.0062 1.000
0.119 59(3) 0.523 70(8) −0.145 12(12) 0.0104 1.0000
0.119 57(3) 0.516 36(8) −0.144 40(11) 0.0164 1.000

O(1) 0.193 44(3) 0.545 97(8) 0.094 79(12) 0.0105 1.000
0.193 43(4) 0.544 04(11) 0.094 68(17) 0.0161 1.000
0.193 44(4) 0.530 65(12) 0.094 57(18) 0.0259 1.000

O(2) 0.083 02(3) 0.330 14(8) −0.274 69(12) 0.0096 1.000
0.082 94(4) 0.329 0(1) −0.274 43(16) 0.0148 1.000
0.082 37(4) 0.320 6(1) −0.273 54(18) 0.0238 1.000

O(3) 0.076 23(3) 0.729 84(8) −0.275 20(13) 0.0101 1.000
0.076 32(4) 0.728 0(1) −0.275 27(17) 0.0152 1.000
0.077 45(4) 0.718 6(1) −0.274 25(19) 0.0243 1.000

H(1) 0.015 11(6) 0.693 61(16) −0.452 4(3) 0.0197 1.000
0.015 23(9) 0.692 9(2) −0.452 1(4) 0.0237 0.959(4)
0.016 31(12) 0.690 5(2) −0.449 1(5) 0.0330 0.823(4)

H(2) — — — — —
0.020(2) −0.170(5) 0.551(9) 0.0237 0.042(4)

−0.0207(6) 0.6797(11) −0.563(2) 0.0338 0.177(4)

The sum of probability densities at the proton sites is unity and temperature independent,
to within experimental errors (table 2). This is at odds with a random distribution of
tautomers [14–16] that should destroy long range correlations at elevated temperatures. If
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Figure 2. Population degrees of the secondary proton sites as a function of temperature. �:
experiments. Solid line: equation (17) for entangled states. Dashed line: equation (19) for
disentangled states.

Table 3. Interatomic distances in Å units and angles in degrees in KHCO3 at 150 K (first lines),
200 K (second lines) and 300 K (third lines). The variance for the last digit is given in parentheses.

C(1)–O(1) 1.245(2) O(1)–C(1)–O(2) 125.60(5)
1.2439(13) 125.38(8)
1.2434(6) 123.92(5)

C(1)–O(2) 1.2611(13) O(1)–C(1)–O(3) 116.26(5)
1.2614(12) 116.45(9)
1.2734(7) 117.78(5)

C(1)–O(3) 1.3490(14) O(2)–C(1)–O(3) 118.14(11)
1.3458(13) 118.16(8)
1.3331(7) 118.30(4)

O(3)–H(1) 1.011(2) C(1)–O(3)–H(1) 110.16(15)
1.0080(17) 110.47(11)
1.001(2) 112.38(9)

O(2)–H(2) — C(1)–O(2)–H(2) —
1.00(3) 119.6(16)
0.978(9) 119.9(4)

H(1)–H(2) — O(3)–H(1)–H(2) —
0.58(3) 178.0(31)
0.615(8) 175.7(7)

H(1)–H(2) — O(2)–H(2)–H(1) —
2.224(6) 167.2(44)
2.208(8) 172.2(11)

it were the case, a significant amount of the coherent scattering should collapse into off-
Bragg peak diffuse scattering [20], and a decrease of the total density should be observed.
Contrariwise, neutron diffraction reveals that proton transfer does not destroy the spatial
coherence. If this is confirmed, the crystal should be a superposition of configurations I and II
instead of a distribution of uncorrelated tautomers.

As a general trend, the Uii in table 4 are multiplied by factors of ≈2–3 between 150 and
300 K and ≈4–6 between 14 K [12] and 300 K. These values reflect the thermal expansion
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Table 4. Thermal parameters in Å
2

units for KHCO3 at 150 K (first lines), 200 K (second lines)
and 300 K (third lines). The variance for the last digit is given in parentheses. These parameters
account for the contribution of each atom to Bragg’s peak intensities through the thermal factor
T at = exp[−2π2(U at

11h2a∗2 + U at
22k2b∗2 + U at

33l2c∗2 + 2U at
12ha∗kb∗ + 2U at

23kb∗lc∗ + U at
31lc∗ha∗)],

where a∗, b∗ , and c∗ are the reciprocal lattice parameters and h, k, and l the indices in reciprocal
space.

Atom U11 U22 U33 U23 U13 U12

K(1) 0.009 0(2) 0.007 0(2) 0.006 6(2) 0.000 22(17) 0.000 53(17) 0.000 36(17)
0.014 6(3) 0.012 7(3) 0.010 1(3) 0.000 2(2) 0.001 7(2) 0.000 5(2)
0.024 0(3) 0.022 2(3) 0.015 9(3) −0.000 4(3) 0.001 7(2) 0.000 9(3)

C(1) 0.005 68(13) 0.006 00(15) 0.006 41(14) −0.000 3(1) 0.000 44(9) −0.000 03(9)

0.009 60(18) 0.011 10(19) 0.010 16(18) −0.000 38(13) 0.001 64(13) −0.000 11(12)

0.015 04(17) 0.018 18(19) 0.014 68(18) −0.000 04(13) 0.001 62(12) −0.000 27(13)

O(1) 0.007 23(16) 0.012 03(18) 0.010 26(17) −0.000 75(13) −0.001 95(12) −0.000 02(12)

0.011 5(2) 0.019 0(3) 0.015 3(2) −0.001 18(18) −0.001 34(17) −0.000 13(16)

0.017 7(2) 0.031 6(3) 0.023 2(2) −0.001 5(2) −0.004 23(17) 0.000 06(19)
O(2) 0.009 63(16) 0.005 42(18) 0.011 54(18) −0.000 24(12) −0.001 93(12) 0.000 13(11)

0.014 6(2) 0.010 6(2) 0.016 4(2) −0.000 57(16) −0.001 55(18) 0.000 39(16)
0.022 6(2) 0.017 9(2) 0.025 5(3) −0.000 87(18) −0.003 68(19) 0.000 96(17)

O(3) 0.009 40(16) 0.005 89(18) 0.0127 0(19) −0.000 25(12) −0.001 75(12) −0.000 04(11)

0.014 2(2) 0.010 4(2) 0.018 3(3) −0.000 06(16) −0.001 15(18) −0.000 26(15)

0.023 1(2) 0.017 6(2) 0.027 2(3) 0.000 72(18) −0.003 0(2) −0.000 60(17)

H(1) 0.017 3(3) 0.016 2(3) 0.022 5(4) −0.000 2(3) −0.001 1(3) −0.000 2(2)

0.021 1(2) 0.019 5(2) 0.027 0(2) −0.000 4(2) −0.000 7(2) −0.000 1(2)

0.034 9(2) 0.023 6(2) 0.036 9(2) −0.002 4(2) 0.002 3(2) −0.002 1(2)

H(2) — — — — — —
0.021 1(2) 0.019 5(2) 0.027 0(2) 0.000 4(2) 0.000 7(2) 0.000 1(2)
0.034 7(2) 0.023 7(2) 0.036 7(2) −0.006 8(2) −0.002 3(2) −0.005 9(2)

of the mean square amplitudes for atom displacements. Off-diagonal terms Ui j are always
marginal and the Uii are virtually parallel to the principal axes of the thermal ellipsoids.

There is a nonferroic phase transition at Tc = 318 K [21, 22]. Above Tc the symmetry is
C2/m and the unit cell dimensions are virtually unchanged but protons are equally distributed
over the two sites. Further experimental studies of this phase are in progress.

2.2. Quantum coherence

Compared to the four-circle diffractometer, the advantage of the SXD instrument at the ISIS
pulsed neutron source [23] is twofold. Firstly, with the high flux of epithermal neutrons
delivered by the spallation source, one can probe a much larger domain of reciprocal space
than at a reactor source. Secondly, with the time-of-flight technique, the whole accessible
range of reciprocal space is measured for each neutron pulse. This is convenient for seeking
signals in addition to Bragg intensities.

We have measured two as-grown crystals. First, a crystal platelet ≈5 × 3 × 1 mm3 with
the main face (301̄) was loaded into a closed-cycle refrigerator. Measurements were carried
out at 30, 200 and 300 K. Second, a much bigger crystal ≈15 × 10 × 3 mm3 was loaded in a
vacuum tank and then measured at 300 K. There is no visible effect related to the crystal size,
apart from a substantial gain in intensity and signal-to-noise ratio. Multiple scattering events
can therefore be safely neglected.

By definition, Q = k0 − k f is the momentum transfer vector, k0 and k f are the incident
and scattered wavevectors, respectively, with |k0| = 2π/λ0 and |k f | = 2π/λf. The nods of
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Figure 3. Diffraction patterns of KHCO3 at 30 K (A) and 300 K (B) in the (a∗, c∗) plane at k = 0.

The arrows point to the ridges of intensity along Qz at 0 and ≈±10 Å
−1

from the origin along Qx .
The inset visualizes the correspondence between the direct and reciprocal lattices.

the reciprocal lattice are at Q = ha∗ + kb∗ + lc∗, with |a∗| = 2π/a, etc; Qx , Qy , and Qz are
projections onto the x , y, and z axes parallel to the stretching (ν OH in the 2000–3500 cm−1

range), in-plane bending (δ OH ≈ 1400 cm−1), and out-of-plane bending (γ OH ≈ 1000 cm−1)
modes, respectively (figure 1) [11, 24]. Maps of intensity in (a∗, c∗) reciprocal planes, for cuts
perpendicular to (b∗) at different k values (k = Qy/b∗, with b∗ ≈ 1.1118 Å

−1
at 300 K) are

presented in figures 3–6.
The diffraction pattern at 30 K (figure 3(A)) is practically identical to that previously

measured at 15 K for a different crystal with an older version of the instrument [12]. In
addition to Bragg’s peaks and to the anisotropic continuum of intensity centred at Q = 0
due to incoherent scattering, ridges of intensity along Qz are clearly visible.

At 300 K, both Bragg’s peaks and incoherent scattering are largely depressed at large |Q|-
values. By contrast, the ridges of intensity are better visible (figure 4(B)). There are clearly
three ridges parallel to Qz . With hindsight, the ridge going through the centre is also barely
visible at low temperature [12].

The weak temperature effect to the ridges is emphasized by cuts of the diffraction patterns
parallel to (a∗). For example, the cuts at −(4.5 ± 0.2) Å

−1
from (a∗) presented in figure 4

are free of Bragg’s peaks. The sharp peaks correspond to the intercept of the cutting line with
the ridge. The intensity at maximum is similar to that for incoherent scattering at Q = 0. The
peaks are superimposed on the broad continuum arising from incoherent scattering. As the
temperature is increased, the intensity of the ridge remains approximately constant, while that
of the incoherent background decreases. This suggests decoupling of the ridge intensity from
the Debye–Waller factor.

The peak position in figure 4 shifts smoothly from −(9.25 ± 0.2) Å
−1

at 15 K to
−(9.0 ± 0.2) Å

−1
at 300 K. This marginal effect shows that the rods, like Bragg’s peaks,

are largely insensitive to proton transfer. In fact, configurations I and II gives the same systems
of rods. On the other hand, the increasing width from 0.44 to 1.0 Å

−1
is consistent with a

decreasing of the coherence length.
Cuts of the diffraction pattern perpendicular to (b∗) reveal a rather complex pattern of

ridges in (a∗, c∗) planes depending on k (figure 5). At k = 1, the lines are barely visible [12].
At k = 2 or 3, we observe a new pattern composed of ridges at Qx ≈ ±(5 ± 0.2) and
±(15 ± 0.2) Å

−1
, still along Qz . There is no visible ridge at k = 4. Then, from k = 5 to 9,
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0

9.
1
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25

Figure 4. Cuts of the diffraction pattern of KHCO3 in the (a∗ , c∗) plane parallel to (a∗) and at

(−4.5 ± 0.2) Å
−1

from this axis. For the sake of comparison, the cut at 15 K is reported from [12].
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Figure 5. Cuts of the diffraction pattern of KHCO3 at 300 K in various (a∗, c∗) planes. The arrows
emphasize ridges of intensity parallel to Qz and perpendicular to the dimer plane (dashed lines
along Qx ).

we observe the same sequence of patterns as for k = 0 to 4. The ridges along Qx and Qy are
clearly correlated.

2.3. Experimental conclusions

In principle, one can envisage several phenomena to interpreting the ridges.
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Figure 6. Diffuse scattering of KHCO3 at 300 K in between (a∗, c∗) reciprocal planes. The arrows
emphasize ridges of intensity parallel to Qz and perpendicular to the dimer plane (dashed lines
along Qx ).

• Multiple scattering can be discarded since there is no significant change of the ridges
with the sample size. Moreover, it is unlikely that multiple scattering events, essentially
incoherent, could give such a wealth of ridges as shown in figure 5.

• The ridges are quite different from the streaks of diffuse scattering observed in systems
with anisotropic disordering [20]. For hydrogenous materials, observation with neutrons
of diffuse scattering due to proton disordering is normally difficult because of the large
incoherent scattering contribution. The contrast is greatly improved for deuterated
samples, thanks to the more favourable ratio for coherent and incoherent cross sections.
Clearly, the ridges in question for KHCO3 are different in nature. They are observed
at low temperature, although there is no disordering, and they are no longer observed
for KDCO3 [12], in spite of the increased coherent cross-section. Moreover, at elevated
temperatures, possible disordering due to proton transfer along the hydrogen bonds should
give rise to diffuse scattering along Qx that is not observed. Contrariwise, there is no
evidence for position disordering along z that could contribute to the diffuse scattering
observed along Qz . (Any further comparison with streaks arising from electric or magnetic
disordering is pointless.)

• Incoherent scattering can be also rejected since the ridges at Qx ≈ ±10 Å
−1

are well
separated from the incoherent scattering continuum and there is no visible counterpart in
INS [11, 25].

• Finally, the ridges have all the characteristics anticipated for coherent elastic scattering by
the entangled sublattice of protons [12]:

* They are clearly separated from Bragg peaks.
* Orientations correspond to momentum transfer Qz perpendicular to dimer planes.

* Positions at Qx = ±(10.25 ± 0.25) Å
−1

are in accordance with the spacing of double
lines of protons (about 0.6 Å).

* The width along (b∗) is similar to that of Bragg peaks (rod-like shape).

In the next section, we propose a theoretical model. Before this, for the sake of clarity, the
salient experimental conclusions (EC) can be featured as follows.
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EC1: For each of the distinct configurations I and II, proton sites are indistinguishable.
EC2: Proton transfer does not destroy the spatial coherence.
EC3: Ridges of intensity are fingerprints for quantum correlations.
EC4: Quantum correlations are decoupled from the Debye–Waller factor.

3. Quantum entanglement in a lattice of hydrogen bonded centrosymmetric dimers at
T = 0

Different theoretical frameworks have been proposed for the rods of intensity at low
temperature [13, 11, 12, 26–30]. All of them take into consideration the quantum origin of
the rods. They suppose protons to behave as fermions and, therefore, to undergo quantum
entanglement. However, quantum correlations, either for isolated pairs [26, 29, 30], or for
collective dynamics of pairs thought of as composed bosons [12], analogous to Cooper pairs
in superconductivity or 3He pairs in superfluidity, are not in accordance with the persistence
of the rods at room temperature, as reported in the previous section. According to the existing
theories, the rod intensity should be dramatically depressed at elevated temperatures by the
Debye–Waller factor. These theories must be amended and, for this purpose, we start with the
following premises.

(i) For each configuration of the sublattice, proton sites are indistinguishable.
(ii) Proton dynamics are adiabatically separable from heavy atoms.

(iii) Protons are fermions.
(iv) For each configuration, protons are degenerate. The overlap of the vibrational

wavefunctions is rigorously negligible and so is the exchange energy [27]. Spin–spin
interaction is also negligible.

These premises are firmly based on experiments. (i) is established by diffraction (EC1). (ii) is a
relevant approximation for hydrogen bonds [31]. (iii) accounts for quantum correlations (EC3).
This fermion behaviour arises from the decoupling of protons from the chemical environment
due to hydrogen bonding.

Finally, (iv) is a consequence of the distances (≈2.22 Å) between nearest-neighbour
protons. This is at variance with the proposal by Keen and Lovesey [26] and Lovesey [29]
that quantum entanglement arises from the overlap integral S of the nuclear wavefunctions.
This assumption is incorrect. A straightforward estimate gives S ∼ 10−35 [27]. Clearly, S ≡ 0
for all practical purposes. Note that (iv) is also at variance with the statement by Sugimoto et al
[30], after Cowley [32], that quantum entanglement necessarily splits the ground state and that
this splitting should be spectroscopically resolved in order to observe quantum interferences.
Elastic neutron scattering experiments on KHCO3 is an unquestionable counter example [11].
Furthermore, to speculate an exchange energy on the order of 1 meV [30] is unrealistic.

3.1. The crystal of protons

Consider an ideal crystal composed of very large numbers Na , Nb , Nc (N = Na Nb Nc), of unit
cells labelled j , k, l, along the crystal axes (a), (b), (c), respectively. For each unit cell there
are two dimer entities (labelled A and B in figure 1) related through the (a, c) glide plane. These
dimers are indexed as jkl and j ′kl, respectively, with, not forgetting they are indistinguishable,
j = j ′. Within the framework of the Born–Oppenheimer approximation, we start with the
vibrational Hamiltonian for configuration I at T = 0:

H = HH + Hat + CHat (1)
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where HH and Hat represent the sublattices of protons and heavy atoms (KCO−
3 ), respectively,

and CHat contains coupling terms between the two subsystems. For hydrogen bonds coupling
terms between OH (especially the stretching) and O · · · O degrees of freedom are rather strong
while other coupling terms are negligible [31, 33].

In the harmonic approximation, the normal coordinates ξt of H are linear combinations
of the normal coordinates xr and Xs for HH and Hat, respectively: ξt = ∑

r

∑
s crs xr Xs .

The Gaussian wavefunctions 
t,0(ξt ) are not factorable and cannot be antisymmetrized with
respect to proton permutations. The fermion nature of protons is hidden [13]. However,
thanks to the light mass of protons compared to other atoms, dynamics are adiabatically
separable [31] and wavefunctions depending parametrically on lattice coordinates {X} can be
properly antisymmetrized. In the harmonic approximation, the Hamiltonian for protons can be
written as

H0 =
Na∑

j= j ′=1

Nb∑

k=1

Nc∑

l=1

∑

α

{
H0 jklα + H0 j ′klα

}
, α = x, y, z;

H0 jklα = 1

2m

(
P2

1 jklα + P2
2 jklα

) + 1

2
mω2

0α

{[
α1 jkl − α0 jkl

]2

+ [
α2 jkl + α0 jkl

]2 + 2λ0α

[
α1 jkl − α2 jkl

]2
}

;
j ←→ j ′:H0 jklα ←→ H0 j ′klα .

(2)

P1 jklα and P2 jklα are kinetic momenta. Coordinates α1 jkl and α2 jkl are projections onto the α

direction of proton positions, defined with respect to the projection of the centre of symmetry
of the pair jkl. The frequency of uncoupled oscillators at equilibrium positions ±α0 jkl is h̄ω0α.
The coupling term, essentially due to electrostatic interaction, shifts the equilibrium positions
at ±α′

0 jkl = ±α0 jkl/[1 + 4λα]. The last line in (2) means that H0 j ′klα is related to H0 jklα by
substituting j ′ to j . In the remainder of this paper, with any equation depending solely on j is
implicitly associated the same equation depending on j ′. Normal coordinates and conjugated
momenta

αs jkl = 1√
2

(
α1 jkl − α2 jkl

)
, Ps jklα = 1√

2

(
P1 jklα − P2 jklα

)
,

αa jkl = 1√
2

(
α1 jkl + α2 jkl

)
, Pajklα = 1√

2

(
P1 jklα + P2 jklα

)
,

(3)

split H0 jklα into uncoupled harmonic oscillators at frequencies h̄ωsα = h̄ω0α

√
1 + 4λα and

h̄ωaα = h̄ω0α , respectively, each with an effective mass m = 1 amu. The Gaussian
wavefunctions 
a

0 (αa jkl) and 
s
0(αs jkl − √

2α′
0 jkl) are nonlocal and cannot be factored into

wavefunctions for each particle. Protons are fully entangled into EPR-like states [1]. Then,
we define the spatial wavefunctions, either symmetrical or antisymmetrical with respect to
permutation

�0 jkl± = 1√
2

[
∏

α


a
0 (αa jkl)


s
0(αs jkl − √

2α′
0 jkl) ±

∏

α


a
0 (αa jkl)


s
0(αs jkl + √

2α′
0 jkl)

]

,

(4)

and the antisymmetrized state vectors including spin states [34]

|0 jkl+〉H = ∣
∣�0 jkl+〉 ⊗

1/2∑

s1=−1/2

1/2∑

s2>s1

A12[|1 jkl : s1〉 ⊗ |2 jkl : s2〉];

|0 jkl−〉H = |�0 jkl−〉 ⊗ 1√
3

1/2∑

s1=−1/2

1/2∑

s2�s1

S12[|1 jkl : s1〉 ⊗ |2 jkl : s2〉];
(5)
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where |1 jkl : s1〉 and |2 jkl : s2〉 (s1, s2 = ±1/2) are spin state vectors, and S12 and A12 are
the symmetric and antisymmetric projectors, respectively.

Equation (3) defines ‘pseudoprotons’ (αs , Ps ) and (αa , Pa) corresponding to symmetric or
antisymmetric displacements of two ‘half-protons’, respectively. The Pauli principle imposes
that (αs , Ps ) be singlet-like and (αa , Pa) triplet-like, but, in contrast to magnetic systems, there
is no spin–spin interaction and no splitting. Pseudoprotons are nonseparable in the ground state.
Quantum entanglement is energy free. It is dictated by the centre of symmetry and does not
depend on the actual value of λα in (2).

Pseudoprotons become separable in excited vibrational states at
∑

α[(nαa + 1/2)h̄ωαa +
(nαs + 1/2)h̄ωαs ], thanks to u − g splitting. The nonlocal dynamics is preserved but the
spin symmetry is no longer required. This accords with a fundamental precept of quantum
mechanics stating that energy transfer automatically destroys entanglement. Consequently,
vibrational spectroscopy techniques utilizing neutrons, photons, etc, cannot provide direct
evidence for entanglement.

Consider now dynamics of the whole sublattice of protons. Such dynamics are usually
represented as phonons obeying the Bose–Einstein statistics law. Suppose, although this
is not the case, that proton pairs (5) behave as composed bosons analogous to Cooper
pairs in superconductors or atom pairs in superfluid 3He. Then, phonons corresponding to
spatially periodic excitations of dimers should be unaffected by pair permutation and could
propagate [12]. However, whereas Cooper pairs or 3He pairs behave as quasi-molecular
bound entities, protons in KHCO3 are not such bound entities because, according to EC1, the
elementary entity in the crystal structure is KHCO3, not (KHCO3)2. Thanks to the weakness of
proton–proton interaction compared to the crystal field, there is no ‘bosonization’ of the proton
pairs. Collective dynamics must be antisymmetrized upon permutation of protons, wherever
they are located in the crystal, according to (i). Such permutations applied to any wave change
the sign of the phase, and superposition of these anti-phase waves yields automatically zero
amplitude. Hence, phonons are forbidden. The proton sublattice has no internal dynamics and
can be termed ‘super-rigid’. This macroscopic quantum behaviour does not depend explicitly
on interactions between protons. It is dictated exclusively by the lattice symmetry.

Pseudoproton states for the superlattice can be represented as superpositions of
macroscopic single-particle states that are linear combinations of the state vectors (5):

|0τ s〉 = 1√
N

∣
∣
∣
∣
∣

Nc∑

l=1

Nb∑

k=1

Na∑

j= j ′=1

[|0 jklτ 〉 + s|0 j ′klτ 〉]
〉

. (6)

Here, τ = ‘±’ for singlet and triplet states, s = ±1 for A and B symmetry species, respectively.
The sublattice is a superposition of a macroscopic number of degenerate and nonseparable
macroscopic pseudoproton states:

|0〉 = √
N

∑

τ,s

|0τ s〉. (7)

Each pseudoproton is evenly distributed over all sites and each site is equally occupied by
all pseudoprotons. Local coordinates are totally hidden and permutation is now meaningless.
These nonlocal states avoid any conflict with the symmetrization postulate of quantum
mechanics. They are not factorable, nonseparable and maximally entangled.

To the best of our knowledge, there has been no other example of a super-rigid lattice ever
reported. In contrast to dense Fermi gas or liquids, this lattice has no energy band structure,
according to (iv). The Fermi energy is zero and there is no gapless excitation. (In KHCO3, the
lowest excited proton state is at ≈1000 cm−1 � kT .) In addition, the lattice is not a supersolid
analogous to 3He, for which the amplitude of the zero-point vibrations is similar to inter-site
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distances. KHCO3 can be compared to a Mott insulator. The occupancy degree is unity at each
proton site and there is no possible exchange. There is no matter wave. Macroscopic states (6)
and (7) describe nonlocal dynamics of atoms tightly bound to their sites. For each substate, the
wavefunctions oscillate synchronously in phase throughout the crystal.

In the adiabatic regime, macroscopic entanglement is intrinsically decoherence free.
Upon irradiation by photons, neutrons, etc, transient disentanglement may single out
some pseudoproton states, namely

⊗
α(|nαa〉 ⊗ |nαs〉). However, re-entanglement occurs

automatically after decaying to the ground state, by virtue of indistinguishability. Massive
decoherence is cancelled out. Energy-free re-entanglement on the timescale of proton dynamics
(∼10−13–10−14 s) is the key mechanism keeping the sublattice at thermal equilibrium with
the surroundings, despite the lack of internal dynamics. Similarly, the sublattice of protons
can adapt itself to structural changes with temperature and pressure. Note that even at
room temperature the thermal population of the lowest excited proton state is rather small
(∼10−2). Quantum entanglement in the ground state is prevailing, although the coherence
length decreases.

For the deuterated analogue, KDCO3, equations (4) and (5) are irrelevant. The ground
state wavefunction for dimers, namely

∏
α 
a

0 (αa jkl)

s
0(αs jkl − √

2α0 jkl), is symmetrical with
respect to permutation and spin correlation is not required. Dynamics are represented as
nonlocal pseudodeuterons according to (3) and phonons are allowed. Needless to say, the
numbers of degrees of freedom are identical for the two systems. The main consequence
of entanglement is to shrink the allowed Hilbert space from ∼12N for bosons to ∼12N for
fermions. (Note that there are 12 degrees of freedom per unit cell.)

3.2. Cross-sections for neutron scattering

The differential cross-section for elastic scattering by a super-rigid lattice of protons can be
written as [20, 35]

dσ

d�
=

∣
∣
∣
∣
∣

∑

r

bHr exp −iQ · Rr

∣
∣
∣
∣
∣

2

=
∑

r,r ′
b∗

Hr ′ bHr exp iQ · (Rr − Rr ′) . (8)

The time independent lattice vector at site r is Rr . The index r includes all indices j , j ′, k,
l, in (2). The initial and final states are identical, the Debye–Waller factor is unity and the
cross-section is temperature independent. These features ideally match those of the rods. The
scattering operator is bH and b∗

Hr ′ bHr is averaged over nuclear spin orientations. If there were
no correlation,

b∗
Hr ′ bHr = |bH|2 + δr,r ′

(
|bH|2 − |bH|2

)
= σHc

4π
+ δr,r ′

σHi

4π
. (9)

The first term concerns Bragg diffraction. For protons σHc = 4π |bH|2 ≈ 1.8 barns
(1 barn = 10−24 cm2). The second term holds for incoherent scattering that probes the
autocorrelation function (r = r ′). For a super-rigid lattice, this gives a single peak at Q = 0.
The cross-section σHi = σH − σHc ≈ 80 barns is quite large.

Alternatively, for fully entangled protons, bHr and bHr ′ are correlated. There is no
incoherent scattering and the total cross-section is σH = 4π |bH|2 ≈ 81.8 barns. The contrast
σH/σHc ≈ 45 is quite favourable to distinguishing macroscopic quantum correlation among
Bragg’s peaks, especially at large Q values for which incoherent scattering is depressed.
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3.3. Neutron scattering

Neutron scattering can be decomposed into distinct scattering events. First, Bragg’s peaks occur
at nodes of the reciprocal lattice. Except for very particular orientations of Q, momentum
transfer destroys quantum entanglement. Only the probability density is measured. Second,
incoherent scattering by protons gives an anisotropic continuum of intensity, with a Gaussian-
like shape centred at Q = 0. Third, quantum coherence is probed for particular Q-vectors,
when components Qx , Qy , or Qz correspond to nodes of the reciprocal superlattice.

In practical experiments, the transversal coherence length of a neutron beam emitted by
a remote source is about the beam section itself (≈10 cm2). Therefore, macroscopic quantum
entanglement can be probed on the same scale.

Diffraction patterns arising from quantum entanglement can be rationalized as follows.
Protons in dimer planes are aligned along directions parallel to y (dotted lines in figure 1) and
quantum entanglement along this direction can be probed by elastic scattering at Qy = 0. The
vector state obtained by summation along y, namely

|0 jlτ s〉 = 1√
Nb

∣
∣
∣
∣
∣

Nb∑

k=1

[|0 jklτ 〉 + s|0 j ′klτ 〉]
〉

, (10)

is equivalent to a double line of scatterers separated by 2x ′
0, with some similarity to double slits.

Similar double lines are visible along x . Elastic neutron scattering shows interference fringes
compatible with these double lines of entangled protons [11].

We show below (sections 3.3.1 and 3.3.2) that neutron diffraction by the coherent structures
in two dimensions composed of double lines parallel to dimer planes gives the rods of intensity
parallel to Qz , effectively observed for particular values of Qx and Qy . Finally, totally
coherent elastic scattering by the whole sublattice gives sharp peaks with dramatically enhanced
intensities (see below section 3.3.3).

3.3.1. Quantum grating. The lines of protons parallel to y form a grating-like structure
composed of two indistinguishable subsets of double lines corresponding to dimers labelled
A and B, respectively (figure 1). The distance between equivalent double lines is Dx ≈
a/ cos 42◦ ≈ 20.39(2) Å. We consider coherent scattering as a function of Qx , incoherent
scattering along Qz , and we set Qy = 0. The differential cross-section (8) reads as

dσ2

d�
=

∑

τi

∑

τ f

Nb∑

k=1

Nc∑

l=1

∣
∣
∣
∣
∣

Na∑

j= j ′=1

F1( j) + τ f τi exp i(Qx Dx/2)F1( j ′)

∣
∣
∣
∣
∣

2

exp(−2Wz);
F1( j) = bH jkl

[
exp iQx

(
j Dx − x ′

0
) + τ f τi exp iQx

(
j Dx + x ′

0
)]

.

(11)

Here, exp(−2Wz) is the Debye–Waller factor along z. This equation diverges at Qx =
±nxπ/x ′

0 ≈ ±nx 10 Å
−1

, for τi = τ f (in-phase scattering by each double lines). Then,
we estimate Qx Dx/π ≈ ±nx 68 and τ f τi exp i(Qx Dx/2) = 1 (in-phase scattering by the
subgratings). Note that the phase matching condition, namely that x ′

0 be commensurable with
Dx , is intrinsic to the crystal structure. The rods of intensity for nx = 0, ±1, are visible in
figure 3. Rods anticipated at larger Qx values are beyond the measured range. Alternatively, for
Qx = ±(nx + 1/2)π/x ′

0 and τi = τ f , then τ f τi exp i(Qx Dx/2) = −1. Anti-phase diffraction
by the two subgratings cancels out.

In figure 4, the rods observed at Qx = ±(10.15 ± 0.10) Å
−1

at 30 K smoothly shift
to ±(10.06 ± 0.10) Å

−1
at 300 K. The estimated interline spacing increases from 2x ′

0 =
(0.619 ± 0.010) Å to (0.625 ± 0.010) Å. These distances are very close to those estimated
from Bragg diffraction. The profile of intensity along the rods is identical to that of a cut
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Table 5. Orders ny , nx and positions Qy , Qx of rods of intensity arising from the network of
entangled orthogonal double lines of protons in two dimensions. Qy Dy/π is rounded to integers.

ny Qy (Å
−1

) Qy Dy/π k = Qy/b∗ Qx

0 0 0 0 nx π/x ′
0

1 2.86 5 2.57 (nx + 1/2)π/x ′
0

2 5.71 10 5.14 nx π/x ′
0

3 8.57 15 7.71 (nx + 1/2)π/x ′
0

4 11.42 20 10.27 nx π/x ′
0

along Qz through the centre of the incoherent scattering intensity [12]. As the temperature
is increased, there is a parallel narrowing of incoherent scattering at the centre and along the
ridges. Consequently, it is almost impossible to distinguish the rod anticipated at Qx = 0 from
the incoherent scattering signal (see below section 3.3.3).

3.3.2. Quantum array. The differential cross-section for arrays of double lines parallel to x
and y is

dσ22

d�
=

∑

τi

∑

τ f

Nc∑

l=1

∣
∣
∣
∣
∣

Na∑

j= j ′=1

F2( j) + τ f τi exp i(Qx Dx/2 + Qy Dy/2)F2( j ′)

∣
∣
∣
∣
∣

2

exp(−2Wz);

F2( j) =
Nb∑

k=1

bH jkl
{
exp i

[
Qx

(
j Dx − x ′

0
) + Qy

(
k Dy − y ′

0
)]

+ τ f τi exp i
[
Qx

(
j Dx + x ′

0
) + Qy

(
k Dy + y ′

0
)]}

.

(12)

The grating-like structure along y is composed of subsets of double lines of protons
corresponding to lines of dimers, either A or B, along x . The interline spacing is 2y ′

0 ≈
2.209 Å and the two subsets are symmetrical with respect to x . Divergence may occur at
Qy = nyπ/y ′

0 ≈ ny2.86 Å
−1

since Qy Dy/π ≈ ny5 suggests that y ′
0 is commensurable

with Dy . Alternatively, there is no divergence at Qy = ±(ny + 1/2)π/y ′
0 since Qy Dy/π ≈

(ny + 1/2)5 is not integer. The anticipated rods are presented in table 5. For ny even, Qy Dy/π

is also even, τi = τ f , and ridges are anticipated at Qx = nxπ/x ′
0, since Qx Dx/π ≈ 68nx is

even. Alternatively, for ny odd, Qy Dy/π is also odd, τi = τ f and ridges are anticipated at
Qx = (nx + 1/2)π/x ′

0, since Qx Dx/π ≈ 68nx + 34 is still even.
In figure 5, planes at k = 0, 5, and 10 show the expected rods at Qx = 0 and

±(10.2 ± 0.1) Å
−1

. The rods at Qx = ±(nx + 1/2)π/x ′
0 are observed at k = 2 and 3, or

7 and 8. According to table 5, the intensity should be a maximum in between these planes, at
k ≈ 2.6 and 7.7, respectively. The corresponding maps (figure 6) confirm that the super-rigid
reciprocal lattice is clearly distinct from the Bragg reciprocal lattice.

Note that (11) is a particular case of (12), for Qy = 0. These equations were treated
separately for the sake of clarity.

3.3.3. Quantum crystal. The differential cross-section for the superlattice of protons in three
dimensions is

dσ3

d�
=

∑

τi

∑

τ f

∣
∣
∣
∣
∣

Na∑

j= j ′=1

F3( j) + τ f τi exp i(Qx Dx/2 + Qy Dy/2)F3( j ′)

∣
∣
∣
∣
∣

2

;

F3( j) =
Nb∑

k=1

Nc∑

l=1

bH jkl
{
exp i

[
Qx

(
j Dx − x ′

0
) + Qy

(
k Dy − y ′

0
) + Qzl Dz

]

+ τ f τi exp i
[
Qx

(
j Dx + x ′

0
) + Qy

(
k Dy + y ′

0
) + Qzl Dz

]}
.

(13)



Macroscopic quantum entanglement 3245

This function diverges along the rods of intensity at Qz = ±nz2π/Dz , with nz = 0, 1, 2, . . .,
Dz ≈ c × cos 28◦ ≈ 3.28 Å and 2π/Dz ≈ 1.92 Å

−1
. The cross-section for these peaks

(≈101.7 barns) is about five times that for Bragg’s peaks (≈21.7 barns). The enhancement
of Bragg’s peaks along the ridges of intensity are clearly visible in figures 3 and 5. The rods
of intensity observed at Qx = 0 are essentially due to enhanced peaks, while the diffuse part
cannot be distinguished from incoherent scattering. Consequently, the ‘ridge’ of enhanced
peaks is better visible at room temperature.

In conclusion of this section, KHCO3 offers the (so far unique) opportunity to observe
diffraction by a super-rigid lattice: double lines [11]; grating; array; and full superlattice in three
dimensions. All patterns are interpreted comprehensively with the macroscopic single particle
states (6) and (7). The remarkable coincidence of the rods predicted in table 5 with observation
is unlikely to be fortuitous. The sublattice of protons is entirely determined by diffraction, and
there is no adjustable parameter in the calculation of the differential cross sections. (This is at
variance with the model by Keen and Lovesey where S is adjustable [26].)

As long as alternative interpretations can be safely discarded, we confidently conclude that
macroscopic quantum entanglement occurs in three dimensions at room temperature, on the
scale of Avogadro’s constant. As a matter of fact, some diffraction experiments presented above
were carried out with a crystal containing ∼1022 protons. There is no fundamental objection to
extrapolating such quantum states to bigger crystals.

4. Temperature effects: single particle macroscopic tunnelling states

Proton transfer across hydrogen bonds in centrosymmetric dimers of KHCO3 is commonly
represented as a thermally activated interconversion between tautomers. NMR [14, 16], quasi-
elastic neutron scattering [15], and spectroscopy studies [36, 25] converge to the conclusion
that proton transfer occurs via tunnelling across a quasi-symmetric double minimum potential.
Two statistical mechanisms have been proposed: the pairwise synchronous transfer and the
uncorrelated two-stepwise single proton transfer. However, diffraction does not confirm
stochastic disordering, even at elevated temperatures (EC2). Consequently, statistical models
based on interconversion of local dimers [37] are inappropriate.

The rods observed at 300 K indicate that the quantum coherence of the super-rigid
lattice is preserved. The proton distribution at elevated temperatures must be thought of as
a superposition of macroscopic states, say |I〉 and |II〉, corresponding to the different proton
configurations sketched in figure 7. |I〉 is the ground state of I, identical to (7). Proton dynamics
can be treated in exactly the same way for configuration II in order to construct the ground state
|II〉. The two configurations are not degenerate: |I〉 is the crystal ground state, whereas |II〉 is at
a higher energy and its population degree is temperature dependent. Quite remarkably, the lines
of protons are identical for the two configurations. Diffraction by the superlattice is unaffected
by the superposition of states and the rods of intensity are observable at any temperature.

The superposition of super-rigid states accounts for the population degrees of the proton
sites as a function of the temperature but this cannot account for proton transfer dynamics.
Transitions between |I〉 and |II〉 require energy transfer and, therefore, disentanglement. Then,
symmetric and antisymmetric pseudoprotons become separable. Two entangled single particle
states (singlet and triplet-like, respectively, each with 12-fold degeneracy) split into four
disentangled states with sixfold degeneracy:

|Ia〉 ⊗ |Is〉 at 0;
2−1/2 [|IIa〉 ⊗ |Is〉 ± |Ia〉 ⊗ |IIs〉] ; at hν01;
|IIa〉 ⊗ |IIs〉; at 2hν01.

(14)
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Figure 7. Schematic view of proton configurations for the entangled states |I〉 (bottom) and |II〉
(top).

The states |I〉 (entangled) and |Ia〉 ⊗ |Is〉 (disentangled) on the one hand, |II〉 and
|IIa〉 ⊗ |IIs〉 on the other, are degenerate. These disentangled states are those probed by Bragg
diffraction.

In the intermediate disentangled state, a pseudoproton is transferred without destruction
of the centre of symmetry (figure 8). For the sake of simplicity, we suppose the two substates
are degenerate, although a splitting would not change the overall scheme. The interconversion
dynamics can now be represented as a disentanglement/re-entanglement process:

|IIa〉 ⊗ |Is〉 ± |Ia〉 ⊗ |IIs〉 ←→ |I〉 ± |II〉. (15)

The energy level scheme for proton transfer dynamics is presented in figure 9. This is a
two-stepwise process, each step corresponding to the transfer of a pseudoproton. In previous
works, the quasi-symmetrical double minimum potential for proton transfer was determined
from experimental data: the distance 2x ′

0 from the crystal structure; the potential barrier from
the OH stretching bands [36]; the ground state splitting (hν01) from INS [25]. This effective
potential accounts for the transfer of a bare proton along a linear coordinate. This has been a
puzzle, ever since it was determined, for it was difficult to rationalize the local transfer of a
single proton. We now understand that this effective potential is actually a nonlocal potential
for the transfer of a nonlocal pseudoproton with a mass of 1 amu. The ground state splitting
can therefore be assigned to the intermediate state: hν01 ≈ 216 cm−1. (Note that there is no
measurable splitting.) Then, the superposition of entangled states at thermal equilibrium

|
(T )〉 = cI(T )|I〉 + cII(T )|II〉, (16)

with c2
I (T ) + c2

II(T ) = 1, gives the relative population of the secondary site as

c2
II(T ) = 2p2

01(T )[1 + p2
01(T )]−1 (17)

where p01(T ) = exp(−hν01/kT ). In figure 2, the solid line is in reasonable agreement with
measurements. Alternatively, the disentangled state at thermal equilibrium

|
(T )〉 = c00(T )|Ia〉 ⊗ |Is〉 + 2−1/2c01(T )[|IIa〉 ⊗ |Is〉
± |Ia〉 ⊗ |IIs〉] + c11(T )|IIa〉 ⊗ |IIs〉, (18)
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0

b

a

Figure 8. Schematic view of the virtual disentangled state 2−1/2(|IIa〉 ⊗ |Is 〉 ± |Ia〉 ⊗ |IIs 〉). All
proton sites are equally occupied.

Figure 9. Energy level scheme for entangled (left) and disentangled (right) states.

with c2
00(T ) + c2

01(T ) + c2
11(T ) = 1 gives the population of the secondary site as

P(T ) = [
p01(T ) + 2p2

01(T )
]

P−1(T ), (19)

with P(T ) = 1 + p01(T ) + p2
01(T ). The calculated population degree (the dashed curve in

figure 2) is quite at variance with observation. Consequently, the population degree of the
intermediate state is clearly negligible and does not obey Boltzmann’s law. This state is virtual.
It does not exist if it is not ‘measured’. The potential function is also virtual. How is it related
to the Born–Oppenheimer potential surface is an open question. This is a challenge for further
theoretical progress. At least, semiclassical instanton methods utilized to calculate extreme
tunnelling trajectories [38] can be questioned.

Figure 2 emphasizes the impact of macroscopic entanglement on the thermodynamics. It
shows that entanglement can play an essential role in the evolution of a large ensemble of
particles in complex systems. This result challenges the Schrödinger’s cat paradox, one of the
most famous paradoxes in the foundation of quantum mechanics. This paradox consists in the
conclusion that a macroscopic object may be in a linear superposition of states corresponding
to macroscopically different behaviours, provided that it is not observed. As opposed to this,
we do observe/measure a superposition of macroscopic tunnelling states without any significant
perturbation. In fact, the transition from quantum to classical is impossible for the superlattice
because environment/measurement induced decoherence is automatically counterbalanced by
spontaneous re-entanglement. The superposition state is therefore an objective reality, dictated
by the crystal structure, regardless of whether it is observed or not. Another challenge is that
any thought observation gives either a dead or an alive cat-state, with a certain probability,
while experimental disentanglement of KHCO3 preserves the superposition of the two proton
configurations.
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5. Conclusion

At any temperature up to 300 K, the sublattice of protons is a macroscopic quantum object
whose dynamics is adiabatically separated from the rest of the crystal. There is no evidence for
disordering and there is no transition from quantum to classical regime. Apparently, there is no
upper limit on the size and complexity for time-independent entanglement at room temperature.

The cornerstones of our theoretical framework are (i) indistinguishability, (ii) adiabatic
separation, (iii) the fermionic nature of protons, and (iv) degeneracy. Entanglement arises
from the crystal structure and does not depend explicitly on the strength of proton–proton
interactions. We define pseudoprotons (m = 1 amu) as nonlocal macroscopic single particle
states and we show that the sublattice of protons is super-rigid and decoherence-free.

Up to room temperature, a number of protons on the scale of Avogadro’s constant
is in a superposition of single particle tunnelling states corresponding to distinct crystal
configurations. Entanglement plays an essential role in the thermodynamics of proton transfer.
On the other hand, disentanglement gives rise to virtual states that can be thought of as the
transfer of a nonlocal pseudoproton across a virtual nonlocal double minimum potential.

Super-rigidity adds a crystalline solid to the list of substances with ‘super’ properties along
with liquids (superfluidity in 4He and 3He), vapour (Bose–Einstein condensates of ultracold
atoms) and electrons (superconductivity in metals and high-Tc copper oxides) [39].
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[6] Laloë F 2001 Quantum mechanics, strange correlations; paradoxes and theorems Am. J. Phys. 69 655–701
[7] Leggett A J 2002 Testing the limits of quantum mechanics: motivation, state of play, prospects J. Phys.: Condens.

Matter 14 R415–51
[8] Zurek W H 2003 Decoherence, einselection and the quantum origin of the classical Rev. Mod. Phys. 75 715–75
[9] Chatzidimitriou-Dreismann C A, Redah T A, Streffer R M F and Mayers J 1997 Anomalous deep inelastic

neutron scattering from liquid H2O–D2O: evidence of nuclear quantum entanglement Phys. Rev. Lett.
79 2839–42

[10] Caldeira A O and Leggett A J 1983 Quantum tunnelling in a dissipative system Ann. Phys. 149 374–456
[11] Ikeda S and Fillaux F 1999 Incoherent-elastic-neutron scattering study of the vibrational dynamics and spin-

related symmetry of protons in the KHCO3 crystal Phys. Rev. B 59 4134–45
[12] Fillaux F, Cousson A and Keen D 2003 Observation of the dynamical strucuture arising from spatially extended

quantum entanglement and long-lived quantum coherence in the KHCO3 crystal Phys. Rev. B 67 054301
Fillaux F, Cousson A and Keen D 2003 Phys. Rev. B 67 189901 (erratum)

[13] Fillaux F 1998 The pauli principle and the vibrational dynamics of protons in solids: a new spin-related symmetry
Physica D 113 172–83

[14] Benz S, Haeberlen U and Tegenfeldt J 1986 Jump motion of deuterons along hydrogen bonds in KDCO3. A
deuteron relaxation study J. Magn. Reson. 66 125–34

http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRevLett.54.857
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1119/1.1356698
http://dx.doi.org/10.1088/0953-8984/14/15/201
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1103/PhysRevLett.79.2839
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1103/PhysRevB.59.4134
http://dx.doi.org/10.1103/PhysRevB.67.054301
http://dx.doi.org/10.1103/PhysRevB.67.189901
http://dx.doi.org/10.1016/S0167-2789(97)00266-2


Macroscopic quantum entanglement 3249

[15] Eckold G, Grimm H and Stein-Arsic M 1992 Proton disorder and phase transition in KHCO3 Physica B
180/181 336–8

[16] Odin C 2004 13C and 39K high-resolution solid-state NMR study of the nonferroic phase transition of potassium
hydrogen carbonate. Complementarity between NMR and incoherent neutron scattering J. Phys. Chem. B
108 7402–11

[17] http://www-llb.cea.fr
[18] Thomas J O, Tellegren R and Olovsson I 1974 Hydrogen-bond studies. LXXXIV. An x-ray diffraction study of

the structures of KHCO3 and KDCO3 at 298, 219 and 95 K Acta Crystallogr. B 30 1155–66
[19] Thomas J O, Tellegren R and Olovsson I 1974 Hydrogen bond studies. XCII. Disorder in (HCO3)

2−
2 and

(DCO3)
2−
2 dimers: A neutron diffraction study of KHCO3 and KDCO3 Acta Crystallogr. B 30 2540–9

[20] Nield V M and Keen D A 2001 Diffuse Neutron Scattering from Crystalline Materials (Oxford Series on Neutron
Scattering in Condensed Matter vol 14) (Oxford: Clarendon)
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